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In this supplementary file, we first comprehensively re-
view existing coral reef analysis works, foundation models,
and most similar stuff segmentation works in Sec. 1. We
detail our motivation why not explicitly modeling semantic
correspondences due to the biology-specific features and our
problem formulation for coral reef semantic segmentation
in Sec. 2. Then we provide the construction details of our
CoralWorld dataset and our testing set in Sec. 3. We provide
more details regarding the implementations, comparative
algorithms, experimental settings, and evaluation metrics
in Sec. 4, where more experimental results and correspond-
ing ablation studies are also included. Finally, we include
the discussions about the main contribution, broader impact,
limitations, and future work of our work in Sec. 5

1. Related Works
1.1. Coral Reef Analysis
We first provide an explanation about corals and coral reefs
to avoid potential misunderstandings. Corals are individual
organisms that form the building blocks of coral reefs, which
are large underwater ecosystems made up of accumulated
coral skeletons from many generations of coral polyps.
Point-based coral reef analysis. The early stage of coral
reef analysis [47, 62] is based on sparse points (e.g., Coral
Point Count with Excel extensions: CPCe [46] for short).
Point annotations are manually created by experts through
software tools like CPCe for calculating coverage statis-
tics [37] and helping to assess the coral reef ecosystem [52]
both spatially and temporally. However, such a point-based
annotation procedure is time-consuming and labor-intensive,
and it usually takes several minutes to label 100 sparse points
within one image. To speed up the analysis efficiency, Coral-
Net [19] and ReefCloud [12] integrated deep image classifi-
cation for coral reef identification [20, 39, 55] from a spec-
ified patch of image regions centered by the sparse points.
The semi-supervised manner [36] is adopted to speed up
coral reef analysis. However, the patch-based image clas-
sification cannot delineate the complicated and irregular

boundary of corals. More importantly, the cropped image
regions (e.g., 64 × 64 or 224 × 224) may contain multiple
semantic categories while conventional image classification
algorithms [26] cannot handle the discrepancy between vi-
sual content and labels. Thus, in this work, we did not choose
the classification as the pre-training pretext task due to such
discrepancy and such supervised pre-training will hurt the
generalization ability of optimized models.
Major limitations of point-based approaches comprise
1) significant downsampling leads to over-/under- estima-
tion (e.g., only sampling 50 points/pixels for a 4K image
with 3, 840×3, 840 pixels with sampling ratio 0.003392‰);
2) it cannot describe the boundary and geometry of coral
reefs, failing to support dense semantic understanding or
3D reconstruction [31, 40, 48, 64, 76]. The sparse point an-
notations cannot indicate the growth [41] or shrinkage [45]
of coral communities and cannot be used to analyze spatial
distributions on a fine scale.
Coral reef semantic segmentation. Considering these
drawbacks, dense coral reef semantic segmentation [56, 63],
which delineates the boundary of coral reefs while yielding
semantics, is gaining increasing attention from the coral reef
community. Coral reefs, notoriously known for their irregu-
lar boundaries [77] and extensive taxonomic diversity [48],
illustrate substantial challenges in generating precise coral
reef masks. The existing coral reef segmentation works can
mainly fall into two categories: 1) sparse-to-dense conver-
sion [16–18, 58, 59] by utilizing the already available sparse
point annotations, propagating labels of annotated points to
neighbor regions for generating dense semantic masks; 2)
data-driven coral reef semantic segmentation [43, 54, 75]
through full supervision by constructing coral reef segmen-
tation datasets and benchmarks.
Sparse-to-dense conversion involves converting sparse
points into dense masks and simultaneously propagating the
semantic labels of the sparse points to masks. CoralSeg [17]
and Fast-MSS [56] propagated the sparse point labels based
on the Superpixels [21]. However, the Superpixel-based
algorithms suffered from notoriously irregular boundaries
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and significant coral diversity, failing to achieve satisfactory
performance under adverse conditions. PLAS [58] proposed
to ensemble the outputs of different superpixel segmentation
models [42, 69] to get more stable and accurate augmented
dense masks. Raine et al. [59] proposed a human-in-the-loop
procedure to determine some pivotal key points for propagat-
ing the sparse points to dense masks based on the denoised
DINO features [24, 53]. HIL [59] directly used DVT [70] to
perform feature denoising and conducted label propagation
based on denoised DINOv2 features. Even though the in-
volvement of human choices (e.g., smart points) could help
promote the semantic segmentation performance, it is not
scalable to have human involvement for point annotations,
and the already available sparse point annotations are usually
randomly sampled. In this work, we mainly explore sparse-
to-dense conversion performance based on random points.
The recent foundation models (e.g., SAM series [44, 61]
and CoralSCOP [74]) could also be used to generate dense
semantic masks by receiving the labeled sparse points. How-
ever, both overinclusive and inclusive are inevitable. Finally,
we also acknowledge that both HIL and CoralSRT are per-
forming the sparse-to-dense conversion in the feature space.
Compared with HIL, our method uses feature rectification
to improve features from 5 different foundation models, and
further explains the effectiveness of label propagation for
coral segmentation compared to promptable segmentation.

Data-driven coral reef semantic segmentation approaches
optimize models with full supervision at the pixel level.
Promising coral reef segmentation performance has been
achieved due to revolutionizing backbones [27, 28, 67] and
an increasing scale of training data [43, 74, 77]. Yet most
of these are bespoke approaches designed for specific coral
reef images/categories [34, 77] and are not easily adaptable
to new semantic categories and datasets [19]. Furthermore,
most existing coral reef segmentation algorithms are purely
data-driven [71, 74] and lack domain-specific design to dis-
sect and address the essential properties of coral reefs. More
importantly, there is no connection between early sparse
point based analysis and current dense coral reef segmenta-
tion, resulting in the under-utilization of the vast potential of
the abundant sparse point annotations produced by the reef
analysis community [12, 19].

Limitation of existing semantic coral reef segmentation
algorithms. Though satisfactory segmentation performance
was achieved due to the more powerful network and larger
scale of training data, there are still two main limitations
for existing semantic coral reef segmentation algorithms: 1)
Limited pre-defined categories. Existing semantic coral
reef segmentation performs close-set coral reef segmentation.
The semantic categories are pre-defined by domain experts
based on the collected visual observations in advance. The
optimized model can only yield the semantic prediction be-
longing to the constructed label set, which heavily weakens

the generalization of optimized models since the coral bi-
ologists at different sites have different label sets and their
label sets may contradict with each other. 2) Poor gener-
alization ability, which comes from three different factors:
limited data diversity [63] due to the relatively small scale
of training data collected at local sites; low network capacity
that leads to poor segmentation results under some adverse
conditions [72] (e.g., low visibility, motion blur, dynamic
lighting and under/over exposure); and the lack of zero-shot
ability to segment unseen coral reef images.

In this work, we aim to perform coral reef semantic
segmentation based on features from the powerful foun-
dation models (FMs) optimized by a significant scale of
training data without introducing any human annotations or
retraining/fine-tuning the FMs. Meanwhile, our CoralSRT
through rectifying the features to approach the centrality of
the semantic-agnostic segment, could better model the coral
reefs.

1.2. Foundation Models

We discuss the essential differences between CoralSRT and
existing foundation models in detail.
Comparison with promptable segmentation foundation
models. The promptable foundation models like SAM [44],
SAM 2 [61], and CoralSCOP [74] could receive prompts
from the users to obtain the required masks in an interactive
manner. Due to their semantic-agnostic training manner, the
automatically generated masks result in many false positives
and false negatives. CoralSCOP was the first foundation
model for coral reef segmentation, with a parallel semantic
branch for coral reef segmentation. However, such pure data-
driven approaches ignored the intrinsic properties of coral
reefs. Unlike instance segmentation [23, 38, 49, 73], where
each instance can be clearly defined by the visually con-
sistent and standardized “structural unit” among the same
semantic, coral segmentation faces challenges due to the
ambiguity in instance definition. This is caused by its amor-
phous, self-repeating, and asymmetric characteristics. The
ambiguous or even conflicting annotations within the train-
ing annotations would degrade the performance of coral
segmentation and introduce ambiguities to the generated
masks. In this work, we propose performing coral semantic
segmentation in the feature space to enable global image
understanding through feature clustering, rather than focus-
ing on local regional analysis based on full supervision [44],
where all labeled sparse points contribute to assigning labels
to unlabeled points. By utilizing the readily available sparse
point annotations, we could better utilize the global image
information rather than promptable regional visual under-
standing, even a few sparse points provided (e.g., fewer than
5 points).
Comparison with DINO series [24, 32, 53]. Due to the
pre-training on the large-scale dataset, DINO and DINOv2



demonstrated a feasible ability to model the implicit seman-
tic correspondences between different images and regions
even under the self-supervised setting. However, the feature
space of the DINO series may be insufficient to accurately
capture the complex boundaries of coral reefs. Thus, we pro-
pose a novel feature rectifying module in the feature space
to strengthen the within-segment affinity based on the su-
pervision from humans or FMs [44, 61] optimized by full
supervision. Our approach bridges the self-supervised pre-
training and supervised training in the feature space without
retraining the FMs.
Comparison with image-text pre-training. Unlike
CLIP [57], OpenCLIP [29], and BioCLIP [65], which utilize
paired image and text annotations for model optimization,
we did not explicitly model the semantic correspondences
based on human annotations for better preserving the flexi-
bility to various local requirements. Furthermore, our main
goal is to generate dense masks, while these image-text pre-
training approaches cannot directly localize the regions of
interest while delineating coral reef boundaries for further
analysis.

1.3. Stuff Segmentation
The coral reef semantic segmentation could be categorized
as stuff segmentation. COCO-Stuff [23] conducted the first
attempt to do the stuff segmentation and summarized 5 key
properties between “instances/things” and “stuffs”: shape,
size, parts, instances, and texture. Inspired by this work, we
have also summarized the challenges of conducting coral
segmentation:
• Amorphous distribution leading to irregular boundaries.

Corals often feature non-uniform, encrusting, or intricate
growth patterns that defy simple geometric descriptions,
such as irregular edges.

• Repeatability or Fractality: The structure of corals ex-
hibits a self-similar, fractal-like nature, where patterns or
arrangements recur at varying scales.

• Diversity. Corals or coral reefs consist of a wide variety
of components, contributing to their complex appearance.

• Self-occlusion: Due to clustering or overlapping elements,
parts of the structure obscure others, complicating visual
interpretation.

• Asymmetry. The whole reef structure is usually asymmet-
ric, with amorphous shapes.

Given the high complexity and inter-heterogeneity of coral
reef images characterized by the above-discussed challenges,
coral reef semantic segmentation underscores a more dedi-
cated design to model the coral reefs.

In this work, we take a further step to model the character-
istics of coral reefs and how they grow, which are inherently
probabilistic. We explain the key difference between seg-
menting the general objects (e.g., fish) and corals in Figure 1.
From this figure, we emphasize one key difference between

segmenting coral and general objects like fish: we cannot
summarize a visually consistent “structural unit” for corals,
thus we cannot conduct a reasonable and consistent instance
segmentation for coral reefs as demonstrated in Figure 2. We
further explain the differences between instance segmenta-
tion and coral segmentation from the task formulation and
requirements. First, the instances are countable based on a
clear definition of a visually consistent structural unit, and
corals are uncountable, where area cover is computed for
corals. It is biologically challenging to define a visually
consistent structural unit for coral reefs to obtain individ-
ual instances among various coral species. Then, existing
coral reef analytical approaches focus on the area cover
computation rather than object/instance counting. Such a
domain requirement encourages the semantic/stuff segmen-
tation of coral reefs rather than instance segmentation. The
amorphous and self-repeated properties of corals also re-
sult in a higher prediction tolerance to the predicted area
since we only focus on the Intersection-of-Union between
the predicted masks and labeled ground truth. In detail, split-
ting one connected coral area two separated masks while
only missing some minor areas will result in a small penalty.
In contrast, splitting two dogs to three dogs will result in
high prediction errors. The intrinsic self-repeatability or
fractality of corals also inspires us to utilize the median or
mean statistics to better model coral reefs, since there is
no clearly defined structural information between different
regions from the same semantic category.

2. Motivation and Problem Formulation
2.1. Biology-specific Features
In this section, we discuss the biology-specific features of
corals for why not define explicit semantic correspon-
dences/categories or integrate the correspondences into our
model design. In our CoralSRT, the semantics are inherited
from the annotated sparse points after the sparse-to-dense
conversion. We summarize four reasons as follows:
• Flexibility. How to define correspondences between

corals is highly subject to the domain requirement and
human involvement (e.g. some coral biologists are sepa-
rating bleached and normal corals out even if the corals
are from the same species). It is not the main focus of this
paper, and we advocate such flexibility to support various
domain requirements. In this way, our approach demon-
strated strong flexibility to various downstream coral reef
analysis tasks without pre-defining the semantic label sets.
Users could self-design their own label sets, and our model
also illustrated a strong zero-shot ability to coral reef im-
ages from different sites all around the world, thanks to
the large volume of pre-training data.

• Reticulate pattern1. Compared with other sea creatures,
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Figure 1. The key difference between segmenting the fish and the corals: the fish has a visually consistent “structural unit” while the corals
do not have. No matter which part of the fish is occluded, we humans can almost imagine its boundary and shape. But for corals, we cannot
imagine a consistent output from two occluded inputs with different regions occluded.

Instance	segmenta+on

Coral	segmenta+on

Countable:	two	dogs

Uncountable:	area	cover

A piece of dog can be “tongue” or “nose”

w/	structural	unit

w/o	structural	unit

A piece of coral is still coral

error:	0.65

error:	0.01

Predic+on	tolerance

Predic+on	tolerance

Figure 2. We differentiate instance segmentation and coral segmen-
tation from three aspects: 1) task formulation, 2) whether it has a
visually consistent structure unit, and 3) the prediction tolerance to
the segmentation outputs.

corals have their specific reticulate evolution: the defini-
tion of species will change over time (e.g., converging and
diverging). A perfect taxonomic hierarchy of corals would
be based on 1) all species being taxonomically isolated
units and 2) every species being included. In the real world,
these conditions can never be met. This creates an endless
dilemma, for humans/experts cannot easily communicate
in terms of continua. It also results in the situation that
the fine-grained coral reef analysis is still closely linked to
domain expertise involvement.

• Discovering property. From a practical perspective, the
optimized model is required to discover novel coral species
that do not exist in the training data. The need for redun-
dant labeled examples for every new semantic category
limits the applicability of optimized models since we do
not know the semantics in advance or the data distribution

overview-of-coral-taxonomy/

of the testing data. Overfitting to the pre-defined semantic
categories will weaken the generalization ability of the
optimized models.

• Inefficient visual observation. Due to the specific under-
water conditions, it is challenging to identify the semantic
categories (e.g., species) of the corals due to the poor visi-
bility and indiscriminative features. Furthermore, for some
very similar corals, the hierarchical taxonomy can only
be reliably identified through genetic methods [66] (e.g.,
DNA barcoding) or molecular technology, where solely vi-
sual information is far from accurate identification. Thus,
clearly defining semantic categories at a fine-grained gran-
ularity will introduce noise and ambiguity to optimizing
the models.

2.2. Problem Formulation
In this section, we detail how we formulate the coral reef
semantic segmentation. We revisit the definition of segmen-
tation as the process of partitioning an image into segments
with homogeneous presentations. For CRSS, we define two
fundamental formulations as demonstrated in Figure 3:
• A segment is a connected region where all the pixels within

it belong to the same implicit semantic category. The
segments from two semantics must not be clustered into
the same segment (e.g., Point A and B).

• We model within-segment affinity (Point B and D) and
cross-segment affinity (Segment 1 and 3), effectively
reducing intra-segment variance and enhancing inter-
segment differences.

The affinity captures repeated textures, similar geometries,
and biologically similar features. By modeling these two
types of affinity, we enable CRSS to exhibit strong flexibility
and generalization, as all CRSS tasks can be adapted to our
formulation.
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Figure 3. Our simple and fundamental problem formulation for
CRSS: segment as the basis to model within-segment and cross-
segment affinities.

3. Data Construction

3.1. Training Data Construction
The advance of the recent foundation model regarding visual
understanding often comes with a greater demand for a sig-
nificant scale of training data in terms of both data diversity
and coverage. In this section, we discuss the detailed proce-
dure of constructing a diverse and comprehensive coral reef
dataset called CoralWorld.
Construction of CoralWorld dataset. To optimize a robust
and effective model, it is important to build a large and
diverse dataset by collecting coral reef images from a wide
range of tasks, locations, and contexts. In this work, we
have considered both public and private data sources to
enrich the diversity and promote the quality of collected
images. We illustrate the details about the composition of
our constructed CoralWorld dataset in Table 1.

3.1.1. Public Data
Public coral reef images were downloaded and curated from
the existing datasets, platforms, and websites.
• CoralNet [19]. We have downloaded all the public coral

reef images from 1,050 public sources of CoralNet until
the date of Nov 23, 2024. Please note that we failed to
scrape some coral reef images that are a relatively small
portion (estimated to be smaller than 1%) due to the unsta-
ble network link. Finally, we have obtained 555,886 coral
reef images from 861 non-empty public sources (some
public sources do not contain any coral reef images).

• CoralMask [74] dataset is the largest coral reef dataset
with dense coral reef masks: 38,928 coral reef images with
299,557 coral reef masks after data cleaning. We adopt the
coral reef images from the diversified CoralMask dataset
to optimize our model.

• Pangea [60] dataset comprises 147 underwater scenes
of coral reefs. Among these, 23 transects include photo
quadrat images annotated by biologists with 47 labels
describing habitat features and biodiversity. Following the
official guidelines, we extracted 7,446 coral reef images
from these 23 transect videos.

• Moorea Labeled Corals (MLC) [18] dataset includes
2,055 images, collected from three different habitats.

• Benthoz15 [22] dataset consists of 407,968 expert-labeled
sparse points from 9,874 geo-referenced images. In each
image, up to 50 pixels were randomly annotated.

• Shutterstock [13]. A promising source of diverse and
nearly unlimited public sources is web scrapes, such as
web images from different websites. Meanwhile, while
these online web sources are many orders of magnitude
larger than current specially curated marine image datasets,
they have significant data quality issues. We adopt the
keyword filtering to remove those unrelated images based
on the Alt-text information.

• YouTube [2]. We also downloaded coral reef videos (using
different keywords to query both coral reef transect videos
and casual reef videos) from YouTube. Then we manually
crop the coral reef frames from the collected coral reef
videos. Finally, we have obtained 12,862 coral reef images
with high diversity and variation.

• EOL [14]. We have collected 48,139 coral reef images
from 428 coral species, where each coral species has at
least 10 images.

• iNaturalist [4]. Similarly, we have also scraped coral reef
images from the iNaturalist website. In detail, 12,761 coral
reef images with research-grade quality were included in
our dataset. These field data captured by coral biologists
have high research value and are preferred for domain
analysis.

• 100 Island Challenge [1] is a large-scale natural experi-
ment, investigating the independent and interacting effects
of oceanography, geography, and human activities in af-
fecting the structure and growth of coral reef communities.
Until now, the official website has provided the captured
visual data for 48 sites, and we chose one field of data for
each site to include the reef images.

• Others. We have also included coral reef images from
other small- or medium-scale coral reef datasets such as
[5–11]. For these datasets, we perform human checking
and conduct down-sampling via different sampling ratios.

• Great barrier reef. We construct the coral reef dataset
from the official website [3]. This dataset was constructed
to accurately identify starfish in real-time by building an
object detection model trained on underwater videos of
coral reefs.

3.1.2. Private Data
We also consider the private coral reef data from coral biolo-
gists.



Table 1. Composition of CoralWorld dataset. We report the list of data sources and associated splits used to construct the CoralWorld
dataset, and how these data sources were included (as is, without downsampling or via rule-based downsampling). For our MSCR, we
indicate the actual number of augmented images and the final number included in the final dataset. We chose to include as many data sources
as possible in the pre-training coral reef data in order to cover as many sites/regions as possible.

Task/Purpose Dataset / Split Images Sampled Augmented Final

Classification CoralNet [19] / 1,050 sources (public) 555,886 Rule-based MSCR 887,823
Classification Pangea [60] / All 7,446 ✘ MSCR 13,742
Classification EOL [14] / 831 species 43,189 Human MSCR 76,271
Classification Benthos15 [22] 9,874 ✘ MSCR 9,874
Classification Great Barrier Reef [50] 23,501 5 MSCR 4,701
Classification Others [5–11] − ✘ MSCR 33,694

Segmentation CoralMask [74] 38,928 ✘ MSCR 100,352
Segmentation Mosaics UCSD [34] / train 4,193 ✘ MSCR 4,193

3D reconstruction 100islands [1] / 48 sites 157,787 ✘ MSCR 630,932
3D reconstruction Mosaics 6 Rule-based Cropping 4,207

Transect videos NOAA2 61,143 ✘ MSCR 244,035
Transect videos 21 sources 14,555 ✘ MSCR 31,139
Transect videos Red sea 360 ✘ MSCR 720

Web images Shutterstock [13] 304,982 ✘ MSCR 304,982
Web images Youtube [2] 12,862 ✘ MSCR 24,971
Web images iNatualist [4] 12,761 Human MSCR 16,011

Private data Red sea, Indo-Ocean 204,166 Human MSCR 204,166
Private data Australia 3,135 Rule-based MSCR 4,968
Private data Pacific Ocean 4,596 Human MSCR 31,617
Private data India, Japan 1,867 Human MSCR 7,468
Private data Malaysia 1,250 Human MSCR 4,888
Private data Deep sea 74 Human MSCR 365

2,641,119

• Routine checking. The coral biologists deploy a series of
video transects along predetermined reef sites, ensuring
the camera is calibrated and securely anchored to avoid
drift. As the coral biologists monitor the video footage in
real-time, they coral biologists check for the clarity of the
images and whether the camera’s field of view captures
a representative cross-section of the reef, including coral
cover and fish populations. Afterward, the coral biologists
review the footage for any signs of coral stress, such as
bleaching, disease, or predation, and make note of any sig-
nificant changes in reef health. These field data captured
by the coral biologists were preferred for reef monitoring
and further analysis.

• Transect videos. Coral reef transect videos are detailed,
time-lapse recordings taken along a fixed path on the
reef, capturing visual data on coral species, fish popula-
tions, and overall reef health. These videos provide a non-
invasive method for monitoring changes in the ecosystem
over time, allowing researchers to assess coral cover, track

disturbances like bleaching or disease, and make informed
decisions for conservation efforts without physically dis-
turbing the reef. The transect videos were collected at
different sites, including Hawaii, Moorea, Hong Kong,
Brazil, South China, Philippines, Great Barrier Reef, Red
Sea, Maldives, Indo-Ocean, Okiwala, India, Malaysia, Ko-
rea, Mexico, San Diego, and Palau.

• Lab-setting observations of corals. Lab-setting coral
reef observations involve examining coral samples or live
coral colonies in controlled environments, where factors
like water temperature, light, and nutrient levels can be
manipulated to study specific reef stressors or behaviors.
These observations allow coral reef biologists to isolate
variables, conduct detailed experiments on coral growth,
and simulate potential future conditions like ocean acidifi-
cation or warming. Unlike transect videos, which capture
natural, real-time reef conditions, lab observations provide
a deeper understanding of coral physiology and resilience
under controlled stress scenarios. We also combine the



Figure 4. The illustration of multi-scale cropping to force the model
to learn the scale-invariant feature representations.

laboratory observations of the corals in our CoralWorld
dataset to support the fine-grained coral reef analysis. All
the coral reef images were captured and contributed by
local coral biologists.

3.1.3. Post-Processing and Analysis
Specific features of coral reef images. The coral reef moni-
toring images are usually benthic images (bird of view) or
quadrat images. These images are usually high-resolution,
capturing comprehensive information about the coral ecosys-
tems. Furthermore, due to the specific underwater condi-
tions [15, 68], visibility degradation, dynamic lighting, and
color distortion are inevitable, leading to further challenges
for humans or even domain experts to accurately identify the
coral reefs. The motion blur within the coral reef transect
videos is also a challenge. Finally, the collected coral reef
images cover a large range of contexts, scenarios, and tasks.
Multi-scale cropping and resizing. Considering a specific
property of the transect quadrat images (which are usually
with high resolution), directly resizing one 4K or even larger
image to a fixed image size (e.g., 224× 224 for DINO [24])
for pre-training will lead to significant information loss and
the model will fail to model local regional information. To
address such a limitation, we perform multi-scale cropping
and resizing (MSCR for short) as demonstrated in Figure 4
to ensure the model can learn the scale-invariant feature
representations, including both local information and global
context information. Finally, we gathered the first large-scale
and diverse training data of 2.64 million coral reef images to
demonstrate the effectiveness of our approach.
Removing duplicated images and quality checking. In
terms of data, we propose an automatic pipeline to build
a dedicated, diverse, and curated coral reef image dataset
instead of uncurated data from public websites and datasets.
The uncurated datasets with noise lead to a significant drop
in the quality of the features. The diversity and coverage
of training data are important for optimizing efficient and
effective foundation models. We have performed human
checking for partial images from some public sources and
datasets to remove those similar images to ensure the high
quality of the collected pre-training data.
Diversity analysis. The whole dataset contains the reef
images captured under various conditions, including close-

Figure 5. Randomly sampled 400 coral reef images from the con-
structed CoralWorld dataset.

Figure 6. The geographic distribution of the collected CoralWorld
dataset.

range monitoring, transect surveying, and remote imaging.
We randomly sample 400 images from the whole dataset to
visualize the diversity of the collected dataset. The visualiza-
tion is illustrated in Figure 5. We also provide the geographic
distribution of our constructed CoralWorld dataset in Fig-
ure 6, demonstrating the diversity and coverage of the coral
reef images from the whole world.

3.2. Construction of Testing Set
We provide the dataset construction details of our testing set.
For annotating the coral reef images with the semantic reef
masks, we utilize SAM [44] to speed up our dense semantic
mask annotations. As for the data sources of our constructed
evaluation set, we describe the data collection details as
follows:
• 1. Deep Sea. We curate a collection of deep-sea coral

images from publicly available platforms. From this col-
lection, we manually select 100 high-quality images in



Figure 7. The example images from the 10 different subsets of our
constructed testing set. We only visualize the coral reef masks for
better illustration.

which the coral structures were clearly visible to construct
this testing set.

• 2. Brazil. We curate this subset from 24 coral reef transect
videos captured by coral biologists. We first manually
extracted 3,984 coral reef images. Then we perform the
random sampling from the total images to obtain the final
100 coral reef images for human labeling.

• 3. Indo Ocean. This testing set was developed in collabo-

ration with a coral biologist team, who provided precise
annotations for the coral regions. We select 100 represen-
tative images to construct the final testing set.

• 4. Moorea. The local coral biologists have captured the
routine field data to monitor the coral reefs. Until now,
local coral biologists have collected 5,571 high-resolution
coral reef quadrat images. We have randomly sampled
100 images for the local biologists to label.

• 5. New Caledonia. Similarly, we constructed this subset
based on the coral reef transect videos, which were con-
tributed by the local coral biologists. We extract one image
frame every 3 seconds from the 21 collected reef videos.
We finally obtained 3,256 coral reef images and randomly
sampled 100 coral reef images for human labeling.

• 6. Palau. We construct this subset based on the 547
coral reef images contributed by the local biologists. All
the coral reef images are benthic quadrat images. We
randomly sampled 100 coral reef images and invited the
local coral biologists to do the semantic labeling according
to their requirements.

• 7. Red Sea. We curate this subset from the collection of
visual observations of the field data. The coral biologists
have captured 856 diverse visual images from comprehen-
sive conditions. We sample 100 images for annotating.

• 8. Seychelles. We construct this subset from 14 transect
videos captured by the local biologists. Similarly, we ex-
tracted one frame every three seconds and finally obtained
2,845 coral reef images. We randomly sampled 100 frames
for expert annotations.

• 9. Hong Kong. We curate this subset from the existing
HKCoral dataset [77], which contains 6 growth form an-
notations, including Encrusting, Massive, Faliceous, Lam-
inar, Branching, and Columnar.

• 10. Hawaii. We curate this subset from the existing Mo-
saics UCSD dataset [34], which contains 34 semantic cate-
gories, including both algae and other non-coral organisms.
We randomly sample 100 uncorrupted images from the
testing set.

Our constructed evaluation set considered the geometric and
species diversity of the coral reefs. We have built the first
medium-scale, diverse, and comprehensive semantic coral
reef segmentation benchmark to better measure the ability of
coral reef segmentation algorithms. Our evaluation set could
also serve as a valuable benchmark to conduct cross-site and
open-set coral reef segmentation. We will release our eval-
uation set to the coral reef analysis community to speed up
the automatic coral reef analysis. The constructed evaluation
set supports the semantic understanding of coral reefs from
different levels to align with the domain requirements, such
as the growth form, genus, or even species.

To better illustrate the diversity and coverage of the con-
structed testing set, we visualize the randomly sampled test-
ing images with corresponding semantic mask annotations



for each sub-set in Figure 7.

4. Experiments
In this section, we provide more details about the experimen-
tal settings, the dataset used, the implementations, the evalu-
ation metrics employed, the comparative algorithms, more
experimental results, and corresponding ablation studies to
demonstrate the effectiveness of the proposed algorithm.

4.1. Experimental Settings
Datasets. We first provide the details of the datasets used
in our paper. Mosaics UCSD [34] dataset contains 23 tax-
onomic and 8 functional groups with dense ground truth
masks [34]. This dataset is the only publicly available dataset
that supports coral genus segmentation with dense ground
truth masks. It contains 4,193 training images and 729 test
images with 34 semantic classes and the background class.
All the images are with 512× 512 size. We only choose the
testing set of this set for evaluation only and removed the cor-
rupted testing images (696 images left after data cleaning).
HKCoral [77] dataset contains coral reef images collected in
the wild and corresponding semantic mask annotations from
the growth form levels. It contains 2,515 images annotated
by 6 various growth forms and the background class. We fol-
low the training/validation/testing split with 1500/500/515,
and we only report the experimental results of the testing
set. The exact dataset usage in our experiments is illustrated
in Table 2. Seaview dataset [37] encompasses over one
million standardized downward-facing “photo-quadrat” im-
ages (covering approximately one square meter of the sea
floor) with 55 million sparse point annotations, which were
collected between 2012 and 2018 at 860 transect locations
around the world, including the Caribbean and Bermuda, the
Indian Ocean (Maldives, Chagos Archipelago), the Coral
Triangle (Indonesia, Philippines, Timor-Leste, Solomon Is-
lands), the Great Barrier Reef, Taiwan, and Hawaii. This
dataset contains more than 1 million coral reef images in
total. The images from the Seaview dataset do not cover the
coral reef images with various viewpoints and fields of view.
Even though the collected quadrat images of the Seaview
dataset are high quality, the restricted diversity and coverage
also poses challenges for models pre-trained on the Seaview
dataset when handling the coral reef images with random
viewpoints and field of views. BenthicNet [51] dataset is
a global compilation of seafloor images. We download all
the unlabeled images from the provided link3 and there are
around 1.45 million images in total, including both labeled
and unlabeled images. Please also note that the Benthic-
Net dataset contains multiple sources with images sampled
from the videos (e.g., Pangea [60]) with a high sampling

3https : / / www . frdr - dfdr . ca / repo / files / 9 /
published / publication _ 609 / submitted _ data / 01 _
BenthicNet/images

Table 2. Exact dataset usage in our experiments. S2D: Sparse-to-
dense conversion.

Datasets
CoralWorld

(2.64M images)
UCSD Mosaics

(test: 696 images)
HKCoral (train/test:
1,500/515 images)

Usage
Self-supervised

learning
Zero-shot S2D
(testing only)

S2D for pseudo labels to optimize
semantic segmentation models

Labels No labels
dense masks as GT for performance comparison;
random point sampling from GT masks for S2D

rate. There is a high potential to contain images with strik-
ingly similar images in the whole dataset. We only adopt the
Seaview and BenthicNet datasets for pre-training.
Evaluation metrics. In this work, we adopt mIoU and mPA
as the main evaluation metrics. mIoU is widely regarded as
the standard metric for segmentation tasks. mPA calculates
the ratio of correctly classified pixels for each class to the
total number of pixels within that class, providing an average
accuracy measure across all classes. Different from exist-
ing approaches that compute the class-level mIoU and mPA,
we choose to compute the image-level mIoU and mPA con-
sidering two main reasons: 1) the distribution of semantic
categories is highly imbalanced and the semantic category
sets between various sites are different. Reporting the mIoU
among the whole testing set with 10 different subsets is chal-
lenging and cannot effectively measure the ability of various
models to conduct the sparse-to-dense conversion. Thus,
we report the mIoU and mPA for every individual image
and compute the average score for all the testing images. 2)
Computing the class-level mIoU and mPA scores for prompt-
able segmentation models is challenging due to overlapping
regions between the masks generated by sparse points with
different semantic categories. To resolve this, we calculate
the IoU and PA for each semantic category and report the
image-level mIoU and mPA to more effectively evaluate the
sparse-to-dense conversion performance. In other words,
each semantic category in an image has its own independent
semantic mask, with the label inherited from the provided
sparse points.

4.2. Implementation Details
Optimization of CoralSRT and CoralSRT. To optimize
both CoralSRT and CoralSRT- , we adopted the network
architecture DVT [70] and removed the positional embed-
ding. For optimizing CoralSRT- , we adopt the coral reef
masks provided by the CoralMask dataset as the human-
annotated masks. As suggested by CoralSCOP [74], we also
generate the non-coral masks based on SAM 2 as the nega-
tive masks. We utilize both positive and negative masks to
force CoralSRT- to strengthen the within-segment affinity
in the feature space constructed from various models and
backbones. To optimize the CoralSRT, we utilize the model-
generated masks from SAM 2 as the supervision and remove
the masks with area values smaller than 1,024. For running
SAM 2, we modified the stability threshold to 0.85 and kept
all the hyperparameters default. For both CoralSRT and

https://www.frdr-dfdr.ca/repo/files/9/published/publication_609/submitted_data/01_BenthicNet/images
https://www.frdr-dfdr.ca/repo/files/9/published/publication_609/submitted_data/01_BenthicNet/images
https://www.frdr-dfdr.ca/repo/files/9/published/publication_609/submitted_data/01_BenthicNet/images


CoralSRT- , we set the batch size to 32 and the number of
training iterations to 50,000. We conduct the training of both
CoralSRT and CoralSRT- on a single GTX 3090 GPU.
DINO pre-training. We conduct the pre-training experi-
ments on 6 Nvidia H800 GPUs with a batch size of 224 per
GPU. The image resolution is set to 224× 224 and the num-
ber of training epochs is set to 100. We adopt the ViT-B/16
as the network backbone and follow the official hyperparam-
eters provided by DINO [24] to conduct the pre-training.
Sparse-to-dense conversion. We adopt the official codes4

of Fast-MSS to perform the sparse-to-dense conversion. For
evaluating the SAM series and CoralSCOP under the prompt-
based setting♠, there are two settings for running the point-
based algorithms: 1) one point by one point and 2) combin-
ing all the sparse points from the same semantic class. Under
both settings, we utilize all the points from other semantic
classes as negative points. We empirically found that the
former setting will lead to better sparse-to-dense conversion
due to grouping two geometrically separated regions into
one mask will lead to visible artifacts. Point sampling: dur-
ing the evaluation procedure, sparse points are randomly
sampled from dense masks within the whole image.

For evaluating various foundation models (SAM, SAM 2,
DINO, DINOv2, and CoralSCOP) under the feature-based
setting♣, we adopt the features from the last layer (11th layer)
of those foundation models for a fair comparison. We then
conduct the KNN clustering following the setting of HIL [59]
to perform the label propagation. We included DVT [70] and
FeatUp [35] for comparing the rectified features. Please note
that we conduct the feature clustering (KNN and K = 1 as
suggested in [59]) based on the same labeled sparse points
for all algorithms under the feature-based setting. We did
not provide the ablation studies of using various values of K
since [59] already demonstrated that increasing K would
not increase performance gains, and our experimental results
are also aligned with this observation.
Optimization of semantic segmentation models. The
three semantic segmentation models (DeeplabV3 [25], Seg-
Former [67], and Mask2Former [28]) were optimized by
80,000 iterations following the official configurations on
GTX 3090 GPUs. We adopt ResNet101-D8, MiT-B5 and
Swin Transformer (Base) network backbones for DeeplabV3,
SegFormer and Mask2Former, respectively.

4.3. More Results
In this section, we provide more experimental results to
provide insights for coral reef analysis.

4.3.1. Dissecting Promptable Segmentation Models
In this section, we dissect why the promptable segmentation
models cannot achieve satisfactory sparse-to-dense conver-

4https : / / github . com / JordanMakesMaps / Fast -
Multilevel-Superpixel-Segmentation

Figure 8. Since there is no visually consistent structural unit to sep-
arate the corals, the users have their own preferences for annotating
the masks, which leads to the inconsistency between the annotated
masks from different annotators. Please note the color is only used
for illustrating different masks and is without semantics.

Figure 9. The promptable segmentation models are sensitive to the
spatial choices of the sparse points (indicated by the stars). Various
point prompts will lead to totally different mask outputs. Please
note the color is only used for illustrating different masks and is
without semantics.

sion performance compared with performing feature clus-
tering in the feature space. We attribute this failure due
to the intrinsic properties of coral reefs: the distribution
of corals is irregular, amorphous, and self-replicating. We
cannot have a visually consistent structural unit to separate
consistent instance masks [49, 73] for segmenting the corals.
As demonstrated in Figure 8, the annotators have their own
preferences for annotating the coral masks. This lead to
inconsistent mask annotations within the training annota-
tions, therefore weakening the ability of models to segment
the corals. Furthermore, we also notice that the promptable
segmentation models are sensitive to the spatial choices of
sparse points as demonstrated in Figure 9. It is very tricky
to find out the pivot points within each mask to generate
consistent and precise dense masks after the sparse-to-dense
conversion. More importantly, the annotated sparse points
are usually randomly sampled and annotated by the coral
reef biologists. Such spatial sensitivity of the promptable
segmentation models is not favored by the coral reef biolo-
gists.

We acknowledge the automatic ability of the promptable
segmentation models to segment the coral reefs based on the

https://github.com/JordanMakesMaps/Fast-Multilevel-Superpixel-Segmentation
https://github.com/JordanMakesMaps/Fast-Multilevel-Superpixel-Segmentation


grid point prompts, especially CoralSCOP with the paral-
lel semantic branch to address the over-segmentation issue.
However, it is not the optimal solution to utilize the prompt-
able segmentation models to perform the sparse-to-dense
conversion based on randomly labeled sparse points due
to the irregular and amorphous distribution of coral reefs.
There is no visually consistent structural unit to separate the
different coral masks as the instance segmentation, making
promptable segmentation models less efficient on coral reef
segmentation.

4.3.2. Model-Agnostic
The proposed CoralSRT is model-agnostic and could be com-
bined with various foundation models, effectively enhancing
the within-segment affinity. We conduct experiments based
on DINO, DINOv2, SAM, SAM 2 and CoralSCOP and
provide the detailed qualitative comparison in Figure 10.
As demonstrated, CoralSRT could yield more effective and
consistent features to better serve the downstream seman-
tic segmentation task. Especially, CoralSRT could heavily
alleviate the grid artifacts of SAM and SAM 2.

4.3.3. Generalization Ability of CoralSRT
Generalization ability to random coral reef images from
Internet. We provide more qualitative results of our Coral-
SRT to the random coral reef images scraped from the In-
ternet based on DINO and DINOv2. The PCA visualization
(first 3 principal components) of original features and rec-
tified features by CoralSRT were illustrated in Figure 11.
Our method demonstrates a strong generalization ability to
distinguish the coral reefs. The learning in the feature space
enables the model to recognize the coral reef features ex-
tracted by powerful FMs and promote the understanding
ability of how to cluster the coral reefs with implicit seman-
tics.

4.3.4. Zero-shot Sparse-to-Dense Conversion
One of the biggest contributions of our CoralSRT to the
whole reef analysis community is that our method provides
an efficient and effective way to convert the redundant sparse
point annotations from the whole reef analysis community
to the dense semantic masks in a zero-shot manner. The
generated dense masks are valuable for the 3D semantic re-
construction of the reef community and also serve for more
reliable and accurate coral cover computation. Besides, the
converted dense masks could also be utilized as the pseudo
ground truth for optimizing dense segmentation models for
local sites without any additional human annotations. Our
CoralSRT does not require any training or fine-tuning. Con-
sidering the Seaview dataset [37] has provided redundant
sparse point annotations, we conduct the zero-shot sparse-
to-dense conversion on the Seaview dataset and provide the
qualitative results in Figure 12. As illustrated in Figure 12,
most of the converted dense masks are reasonable. The pro-

posed method has the potential to push the reef analysis to
the era of dense masks without introducing additional human
annotations or further retraining/finetuning the foundation
models.

4.4. Ablation Studies
In this section, we provide more experimental results to
dissect the effectiveness of each component of the proposed
method.

4.4.1. Comparison with FeatUp and DVT
Since FeatUp and DVT were not optimized by coral reef
images, to make a fair comparison with our algorithm, we
train both FeatUp and DVT on the CoralMask dataset and
evaluate the performance of models on the testing set of Mo-
saics UCSD dataset in a zero-shot manner. Please note that
we do not use any coral reef mask labels from the CoralMask
dataset and we utilize SAM 2 to generate the mask supervi-
sion to ensure there is no any additional labels introduced
during the whole training procedure. We follow the official
instructions of DVT and Featup to conduct experiments on
the CoralMask dataset until the convergence. We report the
quantitative result comparison with these two algorithms in
Table 3. Please note that all the algorithms are using the
same labeled sparse points. As demonstrated, optimizing
DVT and FeatUp on the CoralMask dataset does not lead to
the performance gains than training them on the ImageNet or
COCO-Stuff datasets since they are mainly focusing on the
geometric correspondences between various data augmenta-
tions (FeatUp) and the internal feature artifacts (DVT) within
the ViT architecture. Compared with these two models, our
method demonstrates a more powerful ability to conduct the
coral reef segmentation since we introduced the mask super-
vision in the feature space to strengthen the within-segment
affinity for better modeling the coral reefs.

4.4.2. Sensitivity to Spatial Choice of Sparse Points
We also conduct experiments on the testing set of the Mo-
saics UCSD dataset in a zero-shot manner. We conduct the
experiments under various settings by 5 times and report the
mean scores and corresponding standard deviation. Please
note that all the algorithms use the same labeled sparse points
to make a fair comparison. All the quantitative results are
reported in Table 4. As reported, the proposed method could
achieve the best sparse-to-dense conversion performance un-
der the setting of multiple trials. In this experiments, we
report the quantitative results of CoralSRT- to report the
upper bound of our method.

4.4.3. Investigating Pre-training Datasets
We provide the zero-shot sparse-to-dense conversion perfor-
mance of DINO features (ViT-B/16) pre-trained on different
datasets in Table 5 on the testing set of the Mosaics UCSD
dataset. The corresponding results of rectified features by



Figure 10. PCA visualization (first 3 components) of both original features and rectified features by our CoralSRT from various foundation
models.
Table 3. Quantitative zero-shot comparisons between DVT [70], FeatUp [35] and CoralSRT on Mosaics UCSD dataset [34]. Both DVT and
FeatUp were optimized on the CoralMask dataset [74] for a fair comparison.

Methods 5 points 10 points 20 points 50 points 100 points
mIoU mPA mIoU mPA mIoU mPA mIoU mPA mIoU mPA

DVT [70] 16.85 18.82 24.37 28.64 31.68 37.21 43.27 51.12 51.01 61.03
FeatUp [35] 15.86 18.01 23.57 27.63 31.45 37.11 43.48 51.12 52.03 62.14
CoralSRT 18.15 20.98 26.45 30.67 33.27 40.01 44.66 53.03 52.18 62.19

our CoralSRT were also reported in Table 5. To further
investigate the features from various models, we illustrate
the PCA visualization in Figure 13. The rectified features
produced by our CoralSRT exhibit higher within-segment
affinity and offer more efficient feature representations, lead-
ing to improved performance in semantic segmentation.

Furthermore, as reported in Table 5, with more pre-
training images, the DINO models could generate more
efficient features with fewer holes or artifacts, demonstrating
a stronger ability to cluster similar regions. We also notice
that diversity and quality are important factors for construct-
ing a more efficient feature space. Even if the BenthicNet
dataset contains more pre-training data than the Seaview and
CoralWorld-1M datasets, the generated features from the
DINO model pre-trained on the BenthicNet dataset are still
worse than the DINO models pre-trained on the Seaview
and CoralWorld-1M datasets. Our proposed CoralSRT could
effectively promote the sparse-to-dense conversion perfor-
mance under all the settings, demonstrating the effectiveness
of the proposed method.

5. Discussions
5.1. Contribution Claim
We first discuss our main contributions over existing works.
We have three fundamental contributions to coral reef seg-

mentation:
• Problem revisiting. We have revisited coral reef semantic

segmentation. We have comprehensively dissected the
key difference between segmenting general objects and
corals: whether there is a visually consistent structural
unit. Based on the intrinsic properties of coral reefs, we
have defined the segment as the basis for performing coral
reef segmentation to model within-segment and between-
segments affinities, where the intrinsic properties of coral
reefs, and the domain requirements were considered. Our
approach provides a novel perspective for performing coral
reef segmentation.

• Largest coral reef pre-training dataset construction.
We gathered the biggest and most diverse CoralWorld
dataset with 2.6 million coral reef images to validate our
approach. We have also comprehensively dissected the
relationships between the pre-training data and the con-
structed feature space. Our experimental results demon-
strated that the model could learn transferable features
from the natural images, alleviating the efforts for col-
lecting domain-specific data. Meanwhile, the diversity,
quality, and coverage are also important factors for con-
structing efficient feature space.

• Bridging point-based analysis and mask-based analy-
sis. Our work has bridges the sparse point based analytical
approaches and coral reef semantic segmentation in the



Table 4. Quantitative zero-shot comparisons with specialist algorithms on Mosaics UCSD dataset [34]. All the experiments are repeated
with 5 times to obtain the mean values and standard deviations with the same sparse points.

Methods 5 points 10 points 20 points 50 points 100 points
mIoUstd mPAstd mIoUstd mPAstd mIoUstd mPAstd mIoUstd mPAstd mIoUstd mPAstd

Fast-MSS [56] 1.400.077 9.900.353 2.470.054 11.900.205 4.170.063 13.490.222 7.470.083 15.290.142 9.680.064 15.990.150

PLAS [58] 12.780.260 14.690.303 17.670.229 21.030.358 23.990.210 29.060.202 36.380.185 43.230.207 46.350.285 53.300.285

HIL [59] 16.690.399 18.990.411 23.690.253 27.780.345 31.890.107 38.120.138 43.200.151 52.210.202 51.100.230 61.290.280

FeatUp [35] (DINO) 15.850.391 17.890.461 23.030.292 26.730.382 31.690.128 37.270.175 43.970.288 51.850.263 52.540.314 61.560.360

FeatUp [35] (DINOv2) 15.900.383 17.990.386 23.100.292 26.940.360 31.990.144 37.850.144 44.500.237 52.740.288 53.280.315 62.600.313

CoralSRT- 19.440.494 21.340.536 27.110.368 30.770.508 35.500.122 41.390.171 46.110.123 55.090.184 52.890.345 63.470.382

Table 5. Investigating the features from different DINO models (ViT-B/16) optimized (training from scratch) on different datasets in a
zero-shot manner. The test images are from the cleaned testing set of the Mosaics UCSD dataset.

Datasets CoralSRT 5 points 10 points 20 points 50 points
mIoU mPA mIoU mPA mIoU mPA mIoU mPA

ImageNet-1K [33]
(1.28M)

✘ 14.58 16.59 22.10 26.32 29.67 35.45 41.00 49.29
✓ 16.00+1.42 19.02+2.43 23.67+1.57 29.00+2.68 30.80+1.13 38.14+2.69 41.59+0.59 51.53+2.24

BenthicNet [51]
(1.45M)

✘ 14.32 16.38 21.35 25.60 28.34 34.18 39.16 47.63
✓ 16.16+1.84 18.82+2.44 23.52+2.17 28.52+2.92 30.26+1.92 37.05+2.87 40.17+1.01 49.86+2.23

Seaview [37]
(1.08M)

✘ 14.49 16.17 22.37 25.96 30.14 35.12 41.54 48.86
✓ 16.63+2.14 19.15+2.98 24.69+2.32 29.31+3.35 31.98+1.84 38.33+3.21 42.76+1.22 52.04+3.18

CoralWorld-0.1M
(0.1M)

✘ 13.99 16.04 20.54 24.93 27.06 33.17 36.90 45.93
✓ 16.08+2.09 18.88+2.84 23.51+2.97 28.51+3.58 30.57+3.51 37.37+4.2 40.57+3.67 50.27+4.34

CoralWorld-1M
(1M)

✘ 15.06 16.84 22.89 26.61 30.47 35.64 41.57 49.19
✓ 17.09+2.03 19.35+2.51 25.05+2.16 29.63+3.02 32.31+1.84 38.65+3.01 42.82+1.25 51.92+2.73

CoralWorld
(2.654M)

✘ 15.25 16.96 23.23 26.81 30.77 35.74 41.73 49.16
✓ 17.01+1.76 19.29+2.33 25.08+1.85 29.62+2.81 32.43+1.66 38.61+2.87 42.66+0.93 51.85+2.69

feature space. Our method could re-utilize the existing
redundant sparse point annotations to dense semantic seg-
mentation masks. Meanwhile, CoralSRT demonstrates
a strong efficiency and flexibility for coral reef analysis,
which are invaluable for the coral reef research community.
Promising sparse-to-dense conversion. Our CoralSRT is
the first model-agnostic framework to rectify the features
extracted from various foundation models. The sparse-to-
dense conversion also closes the performance gap with
supervised semantic segmentation algorithms.

• Without retraining or fine-tuning foundation models.
Our algorithm does not shave straightforward scaling up
of the model size, dataset size, and diversity, or length of
training. We try to formulate the fundamental problem for
coral reef semantic segmentation from the intrinsic prop-
erties of corals and the domain requirements of the coral
reef analysis community. We combined the advantages
of self-supervised pre-training and supervised training for
efficient feature rectification.

Modern learning-based segmentation systems require ex-
tensive data collection, time-consuming labeling and heavy
computational resources. It took months or even years to
curate extensive domain-specific data (e.g., CoralWorld with
2.64M images), annotate data with expertise and optimize
models from scratch. Such challenges make these systems
not sustainable for new domain applications. This work

proves that strong performance can be achieved without
extensive curated domain-specific data, expertise involve-
ment and powerful GPUs for optimizing/fine-tuning models.
CoralSRT neither directly utilizes features from existing
foundation models (FMs) nor uses SAM 2 to produce final
output. Inspired by amorphous and self-repeated proper-
ties of corals, our CoralSRT uses model-generated masks as
training guidance to strengthen within-segment affinity of
features from any FM. With a simple lightweight Rec(·) net-
work optimized on a single GTX3090, CoralSRT effectively
transfers learned knowledge from other datasets and FMs
to coral segmentation without introducing any human anno-
tations, outperforming all existing algorithms. The demon-
strated efficiency is the core novelty and contribution of
CoralSRT.

5.2. Broader Impact
Coral reef research is essential for deepening our understand-
ing of the marine ecosystems that are crucial to both marine
life and human societies [30]. Additionally, coral reefs are
among the most biodiverse ecosystems on the planet, sup-
porting an estimated one to nine million species of marine
organisms, including fish, invertebrates, algae, and microor-
ganisms.

We then discuss the potential deployment scenarios of
the proposed CoralSRT. The deployment scenarios include



Figure 11. PCA visualization (first 3 components) of both original
features and rectified features by our CoralSRT from DINO and
DINOv2. CoralSRT demonstrates a strong generalization ability to
unseen coral reef images.

1) sparse-to-dense conversion based on existing sparse point
annotations for more accurate area cover statistics, favored
by coral biologists to conduct coral reef surveying analysis;
and 2) using these converted masks after sparse-to-dense
conversion to optimize semantic segmentation algorithms
while preserving user flexibility. The optimized semantic
segmentation models can then automatically generate seman-
tic predictions.

5.3. Limitations

Medium-scale testing set. First, the constructed Coral-
World testing set is still relatively small compared with the
huge training data. Unlike generating the binary coral reef
masks in [74], annotating the semantic coral reef masks
from different semantic granularities requires significant
domain expertise [34]. Currently, we cannot scale up the
data annotation while considering that the coral reef images

are from various sites around the world, and they require
essential domain expertise for annotation.
Failure to automatically segment coral reefs without
sparse points. Our method, converting the annotated sparse
points to dense masks, cannot automatically generate sepa-
rated coral reef masks as CoralSCOP or SAM series. Coral-
SRT must receive the labeled sparse points to generate the
corresponding dense masks. However, we also point out
that users could utilize the converted dense semantic seg-
mentation masks from sparse point annotations to optimize
semantic segmentation algorithms to alleviate such a limita-
tion.

5.4. Future Works
Semi-supervised coral reef video segmentation. The fea-
tures rectified by our CoralSRT have the potential to model
the semantic correspondences between different coral reef
regions and images, as supported by the PCA visualization.
We leave the semi-supervised coral reef semantic segmen-
tation with minimum human efforts or domain expertise
requirements as our future work.
Multi-modal data. Some coral species can only be reliably
distinguished through genetic methods (e.g., DNA barcod-
ing). Visual imagery cannot express key identifying features,
hindering accurate coral species identification. However, col-
lecting such paired RGB and DNA barcoding data requires
specific domain expertise and specific devices. We leave
these as our future works.
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Figure 12. The zero-shot sparse-to-dense conversion results on the Seaview [37] dataset. Each image was paired with 100 sparse point
annotations. CoralSRT provided a feasible and reasonable way to re-utilize the already available sparse points to dense masks without
introducing any human supervision. The generated dense masks are valuable for the 3D semantic reconstruction of the reef ecosystem and a
reliable way for area cover computation without human annotation.
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Figure 13. We investigate the DINO features (ViT/B16) on Mosaics UCSD dataset. The PCA visualization (first 3 components) of both
original features and rectified features by our CoralSRT from DINO features pre-trained on different datasets. The original image and the
corresponding semantic ground truth are also provided for better comparison.
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Ganase, Chris Roelfsema, Stuart Phinn, and Ove Hoegh-
Guldberg. Scaling up ecological measurements of coral reefs
using semi-automated field image collection and analysis.
Remote Sensing, 8(1):30, 2016. 1
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Goeij, Andréa Grottoli, Simon Harding, Joan Kleypas, Ander-
son Mayfield, Margaret Miller, David Obura, et al. Rebuilding
coral reefs: a decadal grand challenge. 2021. 1

[46] Kevin E Kohler and Shaun M Gill. Coral point count with
excel extensions (cpce): A visual basic program for the de-
termination of coral and substrate coverage using random
point count methodology. Computers & geosciences, 32(9):
1259–1269, 2006. 1

[47] Daniel Langenkämper, Martin Zurowietz, Timm Schoening,
and Tim W Nattkemper. Biigle 2.0-browsing and annotating

large marine image collections. Frontiers in Marine Science,
4:83, 2017. 1

[48] Natalie Levy, Ofer Berman, Matan Yuval, Yossi Loya, Tali
Treibitz, Ezri Tarazi, and Oren Levy. Emerging 3d tech-
nologies for future reformation of coral reefs: Enhancing
biodiversity using biomimetic structures based on designs by
nature. Science of The Total Environment, 830:154749, 2022.
1

[49] Shijie Lian, Hua Li, Runmin Cong, Suqi Li, Wei Zhang,
and Sam Kwong. Watermask: Instance segmentation for
underwater imagery. In IEEE/CVF International Conference
on Computer Vision (ICCV), pages 1305–1315, 2023. 2, 10

[50] Jiajun Liu, Brano Kusy, Ross Marchant, Brendan Do, Torsten
Merz, Joey Crosswell, Andy Steven, Nic Heaney, Karl
von Richter, Lachlan Tychsen-Smith, et al. The csiro
crown-of-thorn starfish detection dataset. arXiv preprint
arXiv:2111.14311, 2021. 6

[51] Scott C Lowe, Benjamin Misiuk, Isaac Xu, Shakhboz Ab-
dulazizov, Amit R Baroi, Alex C Bastos, Merlin Best, Vicki
Ferrini, Ariell Friedman, Deborah Hart, et al. Benthicnet:
A global compilation of seafloor images for deep learning
applications. arXiv preprint arXiv:2405.05241, 2024. 9, 13

[52] Benjamin Paul Neal, Adi Khen, Tali Treibitz, Oscar Bei-
jbom, Grace O’Connor, Mary Alice Coffroth, Nancy Knowl-
ton, David Kriegman, B Greg Mitchell, and David I Kline.
Caribbean massive corals not recovering from repeated ther-
mal stress events during 2005–2013. Ecology and Evolution,
7(5):1339–1353, 2017. 1

[53] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo,
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